

Faculty of Health and Applied Sciences

Department of Health Sciences

QUALIFICATION:

BACHELOR OF MEDICAL LABORATORY SCIENCES
BACHELOR OF ENVIRONMENTAL HEALTH SCIENCES

BACHELOR OF SCIENCES IN HEALTH INFORMATION SYSTEMS MANAGEMENT

BACHELOR OF HUMAN NUTRITION

QUALIFICATION CODE: 08BMLS 08BOHS 07BHIS 08BOHN LEVEL: 5

COURSE: HEALTH SCIENCE CHEMISTRY COURSE CODE: HSC511S

DATE: JULY 2019 SESSION:

DURATION: 3 HOURS MARKS: 100

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER						
EXAMINER(S)	Dr. Yapo Guillaume Aboua & Mr. David Nanhapo					
MODERATOR:	Dr. Marius Mutorwa					

INSTRUCTIONS

- 1. Answer all questions.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

Permissible Material

Non-programmable calculator is allowed.

Attachment: Periodic Table and formulas

THIS QUESTION PAPER CONSISTS OF 12 PAGES (Including this front page)

SECTION A [30]

QUESTIC SELECT (ON 1: ONLY ONE APPROPRIATE ANSWER FROM THE GIVEN POSSIBILITIES	[15
1.1.	Identify the correct order of boiling point a. CH ₄ < SiH ₄ < GeH ₄ < SnH ₄ b. HF < HCl < HBr < HI c. NH ₃ < PH ₃ < AsH ₃ < SbH ₃ d. All are correct	(1)
1.2.	The general formula of monosaccharides is a. $C_nH_{2n}O_{2n}$ b. $C_nH_2O_{2n}$ c. $C_{2n}H_2O_n$ d. $C_nH_{2n}O_n$	(1)
1.3.	A sugar alcohol is a. Arabinose b. Trehalose c. Xylulose d. Mannitol	(1)
1.4.	Starch is a a. Polysaccharide b. Monosaccharide c. Disaccharide d. None of these.	(1)

1.5.	The	most abundant carbohydrate found in nature is	(1)
	a.	Starch	
	b.	Cellulose.	
	c.	Glycogen.	
	d.	Chitin.	
1.6.		lumes of gaseous reactants and products in a chemical reaction can be pressed as ratios of small whole number;	(1)
	a.	If all reactants and products are gases	
	b.	If standard temperature and pressure are maintained	
	c.	If constant temperature and pressure are maintained	
	d.	If each mass equals 1 mol	
1.7.	If t	he temperature of a container of gas remains constant, how could the pressure	(1)
	of t	the gas increase?	
	a.	The mass of the gas molecules increases.	
	b.	The diffusion of the gas molecules increases.	
	c.	The size of the container increases.	
	d.	The number of gas molecules in the container increases.	
1.8.	W	hich one of the following best defines the word "allotropes"?	(1)
	a.	Elements that possess properties intermediate between those of metals and non-	
		metals	
	b.	Different structural forms of an element	
	c.	Atoms of a given atomic number that have a specific number of neutrons	
	d.	A pair of substances that differ by H ⁺	

1.9.	Which one of the following statements is false?	(1)
	a. The masses of protons and neutrons are approximately the same.	
	b. Calcium commonly forms the Ca ² + and cation.	
	c. If an atom gains electron it becomes negatively charged and is called an anion.	
	d. Different isotopes of the same element have different chemical behaviour	
1.10.	In term of compositions, a dilute solution contains	(1)
	a. A lot of solute in a given amount of solvent	
	b. A lot of solvent in a given amount of solute	
	c. little solute in a given amount of solvent	
	d. As much solute as the given amount of solvent	
1.11.	How many significant figures are in 3.408x10 ⁴ m?	(1)
	a. 3	
	b. 4	
	c. 5	
	d. 7	
1.12.	In terms of bonding, elements found in group 5 tend to;	(1)
	a. Lose five electrons	
	b. Lose three electrons	
	c. Gain three electrons	
	d. Gain five electrons	

1.13.	The products formed when an acid and a metal react are;	(1)
	a. Salt and Water	
	b. Salt and Hydrogen	
	c. Salt, Hydrogen and Water	
	d. Salt, Carbon dioxide and Water	
1.14.	The ability of a measurement to be as close to the true value as possible is	(1)
	defined as:	
	a. Accuracy	
	b. Precision	
	c. significant figure	
	d. All the above	
1.15.	At constant pressure, the volume of a gas sample is proportional to its temperature	(1)
	a. Directly; Celsius	
	b. Inversely; Celsius	
	c. Directly; Kelvin	
	d. Inverselv: Kelvin	

QUES	STION 2:	[15
	THE BLANKS BY ONLY WRITING DOWN THE NUMBER AND THE CORRECT ESSION.	
2.1.	The pressure of a gas is directly proportional to the number of moles of the gas if both volume and are constant.	(1)
2.2.	The force per unit area on a surface is called	(1)
2.3.	The pressure exerted by each gas in a mixture is called the of that gas.	(1)
2.4.	The lowest possible temperature, corresponding to zero on the kelvin scale, is referred to as	(1)
2.5.	law establishes that equal volumes of gases at the same temperature and pressure contain equal numbers of molecules.	(1)
2.6	NAVIa are and the disease in contains the contains in the	(1)
2.6.2.7.	When salt dissolves in water, the water is the If a sample of solid matter is uniform throughout and cannot be separated into other substances by physical means, it is	(1)
2.8.	are different structural modifications of the same chemical element that exist in two or more different forms, in the same physical state (e.g Diamond, Graphite).	(1)
2.9.	are atoms of different elements having same number of neutrons.	(1)
2.10.	Sour cream and Salt solutions are example of	(1)
2.11.	Sublimation is the process of transformation of a state of matter from a to gas.	(1)
2.12.	law states that the volume of a fixed mass of gas varies inversely with the	(1)
	pressure at constant temperature.	
2.13.	The separation process of a solid component of a mixture, based on its property to pass through heating direct from the solid phase into the gaseous phase, without melting, is called	(1)
2.14.	is the technique of heating a liquid to create vapor which is collected when cooled separate from the original liquid.	(1)
2.15.	are a large class of naturally occurring polyhydroxy aldehydes and ketones.	(1)

SECTION B [70]

[22]

QUESTION 3

3.1. Match the items given in Column I and Column II by only writing down the number and the letter (5)

Column I

Column II

- 1. Saturated solution
- A. Solution having same osmotic pressure at a given temperature as that of given solution.
- 2. Binary solution
- B. A solution whose osmotic pressure is less than that of another.
- 3. Isotonic solution
- C. Solution with two components.
- 4. Hypotonic solution
- D. A solution which contains maximum amount of solute that can be dissolved in a given amount of solvent at a given temperature.
- 5. Solid solution
- E. A solution whose osmotic pressure is more than that of another.
- F. A solution in solid phase.
- G Hypertonic solution
- H Solid state only

3.2. Complete the following table by filling in the compound name or formula as required.

(5)

Name	Formula	
lead(II) chloride		
dinitrogen trioxide		
	Na ₂ SO ₄	
	SF ₆	
calcium phosphate		

3.3. Name and label four (4) functional groups in the structure and indicate primary (1°), secondary (2°) or tertiary (3°) structure.

(6)

(6)

(4)

(4)

3.4. Name structures A, B and C

$$A$$
 OH B C OH

QUESTION 4 [38]

- 4.1. During a practical class you have been asked:
 - a. To calculate the mass of 0.37 mol of barium chloride.
 - b. What amount (mol) of solute is there in 125 mL of a 0.864 M solution?
 - c. An organic compound containing only carbon, hydrogen and oxygen returns the % mass analysis: C 64.9 %; H 13.5 %. What is its empirical formula?
 - d. Calculate the mass of sodium carbonate ($Na_2CO_3.10H_2O$) required to make 250 mL of a 0.100 M solution. (3)
 - e. In an experiment, 5.0 g of magnesium was dissolved in excess hydrochloric acid to give magnesium ions and hydrogen gas according to the following equation:

 $Mg(s) + 2H^{+}(aq) \longrightarrow Mg^{2}+(aq) + H_{2}(g)$

What amount of hydrogen gas (in mol) is produced in the reaction?

4.2.	Ca	Iculate the molarity of the following:	
	а	A commercial bleach solution contains 5.25% (by mass) of NaClO in water. It has a	(3)
		density of 1.08 g/mL (Hints: assume you have 1.00 L of solution; molar mass of NaClO	
		74.4 g/mol)	
	b	A 15.0% solution of NaOH has 15.0 g for 100 g of solution	(2)
4.3.	Pu	re formic acid (HCOOH), is a liquid monoprotic acid decomposed by heat to	
	ca	rbon dioxide and hydrogen.	(0)
	a.	What mass of the pure acid should be diluted with water to produce 1.00 litre of 2.00	(3)
		M aqueous solution of formic acid?	(0)
	b.	What volume of 0.250 M sodium hydroxide would be required to react exactly with	(2)
		30.0 cm ³ of this dilute solution of formic acid?	(2)
	c.	What is the maximum volume of carbon dioxide at 273 K and 1.00 atmosphere that	(3)
		could be obtained by heating 1.00 mole of formic acid?	(2)
	d.	How many molecules of carbon dioxide would it contain?	(2)
4.4.	On	e of the components of petrol is octane, C_8H_{18} .	(2)
	a.	Write the balanced equation for the complete combustion of octane (with O_2) to	(2)
		form carbon dioxide gas and liquid water.	(0)
	b.	What amount (in mol) of carbon dioxide is formed when 5.5 mol (1 L) of petrol is	(2)
		burnt?	
	c.	What volume of carbon dioxide would this represent at standard temperature and	(2)
		pressure?	

[10] **QUESTION 5** (2)5.1 The pressure of a mass of gas is increased from 150 kPa to 750 kPa at constant temperature Determine the final volume of the gas, if its initial volume is 1.5 m³ (4)5.2 A quantity of gas in a cylinder occupies a volume of 2 m³ at a pressure of 300 kPa. A piston slides in the cylinder and compresses the gas, according to Boyle's law, until the volume is 0.5 m³. If the area of the piston is 0.02 m², calculate the force on the piston when the gas is compressed. 5.3. A pressure vessel is subjected to a gas pressure of 8 atmospheres at a temperature of (4)5°C. The vessel can withstand a maximum pressure of 28 atmospheres. Calculate the gas temperature increase the vessel can withstand.

END OF EXAM QUESTIONS

NAMIBIA UNIVERSITYOF SCIENCE AND TECHNOLOGY

OF SCIENCE HID TECHNOLOGY

	W)			Γ					70			Т		T		7
		773	87	SS	55	RB	37	\$ 7	7 5 5	2000	Z = §	9941	u	1 007%	I -	-
**actinoids	·lanth	Ra	88	g Ba	56 m	S	38 menerana	40 078	200	236	Z 12	9 9122	D _	benylium		N
noids	ianthanoids	*	89-102	×	57.70					1		1				
AC AC	La S7 La	Ę	103	17.62 L	71	§ ≺	39	# C	21						~	ω
22日 20日 20日 20日 20日 20日 20日 20日 20日 20日	95 85 85	及	104	;; 其	hatnum 72	e N	40	47 207	22			Mornic W4	n a	Key:		4
13 70 15 15 15 15 15 15 15 15 15 15 15 15 15	P C	D	105	8 D	73	s Z	notium 41	80 40	< 23 m			atomic weight (mean relative mass)	svmbol	element name		Ot
238 C 92 11 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	O so	Sg	106	: S	tungsten 74	. S	molybdenum 42	<u>ة</u> ح	24			ative mass)	<u>5</u> ₹			ø
		Bh	107	18827 P	menum 75	ر ا	43	NE PE	25					_		7
D included the second	S see	HS H	108	18023	76	Z Z	44	8 T	7 26 3							œ
Am PS	E Sam	M M	109	ž –	77 77		45	S C	27							ø
S S S S S S S S S S S S S S S S S S S	o see	Ds	110	ž 7	platnum 78	PQ	paladum 46	3 Z	28							10
B B S	5 8 8	RO	111	Au	90ld 79	Ag	47	2 5	29 60							=======================================
E C sale	D 68 m	duU	112	æ ₩ Q	80 80	Cd	cadmium 48	2 2	88							12
S University 5	H ST	ut Uut	113	T]	thallum 81	=	49	S G	31	3 3	2 13 m	10 811	IJ۰	boron		13
T 10 10 10 10 10 10 10 10 10 10 10 10 10	T 25	puq	114	Pb	82 82	Sn	S s	2 G	32	2 C	0 = 5g	12911	?	carbon		14
Md 101	3 8 5	duu	115	ğ Ω	83	dS	antmony 51	AS	2 2 2	30 974	U 15	14 007	Z ~.	nappen		5
No see											೧ ಕ§					16
		jone	5								2 = 7			7		17
		Ouo	118	Rn	86	×e	S4 ×	2 2	36 50	ž]	2 # §	20180	Z	4 0026	H _e	18
	•						-									-

Avogadro constant N_A=6.022x1023 mol-1

Boltzmann's constant	k =	1.380658×10^{-16}
Atomic mass unit	$m_u =$	$1.6605402 \times 10^{-24}$
Perfect gas constant	$\mathcal{R} =$	8.3145111×10^7
Electron mass	$m_e =$	$9.1093897 \times 10^{-28}$
Electron charge	e =	$1.602177333 \times 10^{-19} C$
Planck's constant	h =	$6.6260755 \times 10^{-27}$
Speed of light	c =	$2.99792458 \times 10^{10}$
adiation density constant	a =	$7.5659122 \times 10^{-15}$
efan-Boltzmann constant	σ=	5.67051×10^{-5}
Electron-Volt	1 eV =	$1.60217733 \times 10^{-11}$

Length	Energy (derived)
St unit: meter (m)	SI unit: Jaule (J)
1 km = 0.62137 mi	$1 J = 1 kg - m^2/s^2$
1 mi = 5280 ft	1 J = 0.2390 cal
$= 1.6093 \mathrm{km}$	=1Cx1V
1 m = 1.0936 yd	1 cal = 4.184 [
1 in. = 2.54 cm (exactly)	$1 \text{ eV} = 1.602 \times 10^{-19}$
1 cm = 0.39370 in. 1 $\dot{A} = 10^{-10}$ m	Pressure (derived)
1 A = 10 ⁻¹⁰ m	
Mass	51 unit: Pascal (Pa) 1 Pa = 1 N/ m ²
Sl unit: kilogram(kg)	= 1 kg/m-s ²
1 kg = 2.2046 lb	1 atm = 101,325 Pa
1 lb = 453.59 g	= 760 torr
= 16 cc	$= 14.70 lb/in^2$
$1 \text{ amu} = 1.6605402 \times 10^{-24} \text{ g}$	$1 \text{bar} = 10^5 \text{Pa}$
Temperature	Volume (derived)
St unit: Kelvin (K)	SI unit: cubic meter (mg)
0 K = -273.15°C	
459.67°F	$1 L = 10^{-3} \text{ m}^3$ = 1 dm^3 = 10^3 cm^3
K - ℃ + 273.15	$= 10^3 \text{cm}^3$
°C = (°F - 32°)	= 1.0567 qt
	1 col = d at

1 gal = 4 qt = 3.7854 L 1 cm³ = 1 mL 1 in³ = 16.4 cm³

°F = 2 °C + 32°

Stelan-Doltzmann constant	0 -	J.01031 X 10
Electron-Volt	1 eV =	$1.60217733 \times 10^{-11}$
Atomic weight of hydrogen	$A_H =$	1.00782500
Atomic weight of helium	$A_{He} =$	4.00260330
Ionisation potential for H	$\chi_H =$	13.595 eV
1st ionisation potential for He	$\chi_{He} =$	24.580 eV
2 nd ionisation potential for He	$\chi_{He^+} =$	54.403 eV

Properties	
Molecular Formula	H ₂ O
Molar Mass	18.015 g mol ⁻¹
Density	1 g/cc
Boiling point	100 °C at 1 atm
Freezing point	0 °C at 1 atm
Phase	Liquid
Triple point	273.16 K at 4.6 torr
Heat of fusion	6.013 k mol ⁻¹
Heat of vaporization	40.63 k moΓ ¹